
Effective Compression for the Web:
Exploiting Document Linkages

Raymond Wan, Alistair Moffat

The Short Document Problem

• Adaptive sliding window compressors have poor initial performance.

• Once some input has been processed and the Huffman trie has data,
they become reasonable.

• This initial ramp-up is costly, especially for short documents.

Example: Fiala-Green A1 “hownowbrowncow”

• Start in literal mode. We only exit literal mode if there is a length of
match 3, so all of “hownowbr” is transmitted literally, for no savings.

• The next three characters, “own”, are a match, so go back into match
mode and transmit pointer (length 3, displacement -7).

• When we read the next character, “c”, there is no match, so we must
go back into literal mode, where we remain since there are no more
length 3 matches.

Priming, A Solution

• Giving the compressor some
“priming” text, prepending
other input to the document
to it, lets it build the window.

• gzip performance begins to
stabilize at document sizes of
around 10kB.

• Giving gzip 10kB of priming
text lets it reach this level
earlier (by making sure that
every document is at least
10kB!)

7.0-- ¢-

~" 6.0--

"~ 5.0--
t-
O

"~ 4 . 0 --
(,O
CD
~. 3 . 0 -

E
O 2.0

0.1

- , ~ - - - - GZip

GZip with uniform 10 kB c o n t e x t

GZip with preceding 10 kB c o n t e x t

I I I I
1.0 10.0 100.0 1000.0

Fragment length (kB)

Figure 1. Compressing text fragments of different sizes

using GZIP, with no prior context, with a prior context of

10 kB built by taking the most frequent words in the text,

and with a prior context of 10 kB immediately preceding

the fragment being compressed. Each point represents

the average compression attained over 19 independent

fragments drawn from a 20 MB file of English text, includ-

ing S G M L markup.

Indeed, in a sliding window compressor, use of a prim-

ing text is trivial - the desired text is simply placed into

the window before any characters o f the actual message are

processed, and then the program operated as before. For ex-

ample, we could easily construct a window containing com-

mon words (a suitable subset of the f i l e / u s r / d i e t / w o r d s

on Unix system being an obvious example, a fact noted by

Kruse and Mukherjee [1997]) and make it common to both

encoder and decoder. We could also pre-process a collec-

tion of representative files, and extract a set of commonly

used words and strings to initialise the window.

Figure 1 shows the result of a simple experiment to

demonstrate this effect. A 20 MB file containing marked-

up English text was partitioned into 20 sections of uniform

length. To provide each point in the graph, a prefix was

taken of each section but the first, and compressed with

GZlP. That is, each point represents the impact of compress-

ing a total of 19 blocks of text. The upper line shows the

"learning" rate of GZIP. As the blocks get larger, the over-

all compression rate improves. Finally, when the blocks are

hundreds of kilobytes long, compression effectiveness sta-

bilises at the long-term limit (~z[p uses a 64kB buffer).

Other compression mechanisms with a longer "memory"

have correspondingly longer learning periods.

The middle line in Figure 1 shows the compression at-

tained when a 10 kB priming text comprising the most com-

mon words in the test file is assumed. Even relatively small

sections of text can be compressed effectively, and, for ex-

ample, use of this priming text allows sections of 128 bytes

to be compressed at the same bit rate as sections of 512

bytes in the absence o f the priming text. The method for

constructing the priming text will be elaborated upon be-

low, as will the appropriateness o f assuming that a 10kB

file is effectively free.

The lower solid line in Figure 1 shows the performance

possible if the priming text is directly related to the section

being compressed. In this experiment, the priming text was

taken to be the 10 kB passage of text immediately preceding

each section to be processed. Having the priming text drawn

from the same source as the text being compressed is clearly

a further advantage.

It is an HTML compression mechanism based upon these

two simple concepts - use of a priming text, and use of a

sliding window mechanism - that we consider in this paper.

Work has also been undertaken in two related areas: the

reduction of the network bandwidth required to transmit a

HTML file by modifying it, and the detection of contexts

within a web site. Nielsen et al. [1997] performed tests

where files were compressed individually using the ZLIB

library [Gailly and Adler, 1995] as they were being sent to

a client. They showed that doing such high-level compres-

sion was more effective than using the compression built in

to the modems they had available. They also noted the ben-

efits to compression if tags were case-folded to lower case.

Work has also been undertaken in the area of delta encod-

ing of HTML files [Mogul et al., 1997], so that if a client

requests a file that it has had before but has since changed,

the server has the option of sending a difference between the

version in the client's cache and the current version. Related

to the compression of HTML files, Liefke and Suciu [2000]

described a program for compressing large XML files indi-

viduallY called XMILL.

Studies have also been carried out on web sites in or-

der to help search engines rank documents better by finding

contexts for small H T M L files. Mizuuchi and Tajima [1999]

created rules for determining the most likely path a user had

to follow to reach a particular HTML file. Li et aL [2000]

went one step further and created a set of rules that helps

divide a web site into a set of logical domains, where each

domain contains files about the same topic.

3 N o n - l i n e a r texts

In a web site each page can be preceded by a range of dif-

ferent text sections - as many different text sections as there

are pages that contain links pointing to this page. That is,

the text is both non-linear, and accessed in a piece-wise

fashion. In this section we consider how a mechanism such

as GZlP should be applied to such a collection.

3 . 1 A n a t o m y o f a w e b s i t e

To evaluate our ideas we made use of our local web site

at h t t p : / /www. c s . mu. oz . au. In order to allow repeat-

able experiments, a snapshot was taken of all of the files

within that site at midnight on the night o f 23/24 July 2000.

70

Characteristics of Web Traffic

• Web server logs for a CS department’s website over a 7-day period
were analyzed.

• 443.1MB of HTML documents where transmitted to external users,
with an average document size of 9.4kB.

• 70% of external page requests were part of a browser session in
which more than one document was requested.

Exploiting Traffic Characteristics

Method Disk space Network bandwidth

(% uncompressed) (% uncompressed)

NO-COMPRESSION

INDEPENDENT-GZIP

COMMON-PRIMING, 1 kB

COMMON-PRIMING, 10 kB

TRANSMITTED-PRIMING, 1 kB

TRANSMITTED-PRIMING, l0 kB

ONE-PRIOR

ALL-PRIOR

ALL-AVAILABLE, 10kB

ALL-AVAILABLE, LOSSY, 10kB

ALL-AVAILABLE, LOSSY, SPACES, 10kB

100.0 100.0

104.7 27.9

104.5 27.1

104.6 27.2

104.5 31.5

104.6 71.2

109.0 24.5

- 2 3 . 9

23.5

22.5

22.1

Table 3. Additional disk space required to store compressed web pages, and fraction of original network bandwidth required

t o transmit compressed pages, for different compression scenarios and for 443.1 MB of HTML files sent to external hosts.

ALL-PRIOR All of the previous pages in the current brows-

ing session are concatenated to form a priming text. As

in the previous method, the first page in each browsing

session is compressed without the use of any context.

ALL-AVAILABLE As for the previous method, but assum-

ing that the 10kB common priming text is also avail-

able at no cost. This is a "most optimistic" scenario:

all pages can make use of the larger of the two priming

texts, and all but the first page in each browsing session

can also make use of the text of previous pages.

ALL-AVAILABLE, LOSSY As for the previous method, but

with all comments removed from the HTML source, all

whitespace characters between HTML tags removed,

and all tags case-folded to lower case.

ALL-AVAILABLE, LOSSY, SPACES As for the previous

method, but with a single space character inserted after

each string in the dictionary.

The righthand column of Table 3 shows the compression

attained by each of these mechanisms, expressed as a ra-

tio of bytes transmitted compared to when no compression

mechanism is used. (The centre column will be discussed

below.) One slight simplification we have made in present-

ing these results is to assume that all transfers initiated re-

sult in a complete file being transferred. This assumption is

normally correct, but in some circumstances the number of

bytes transferred is less than the size of the file requested.

For example, if the user clicks "Stop" part way through a

transfer, then the transfer is aborted.

As can be seen from the table, compressing each file with

GZIP saves a considerable fraction of the network band-

width needed to support the site. GzIP operates relatively

well, even when the average file is only 10kB. Indeed, given

the speed at which GZlP-encoded text can be reconstructed,

there seems to be no reason why GZIP compression has not

already become either an official or de-facto standard for

transporting web documents.

I f a common priming text is allowed, compression im-

proves slightly - but only slightly. The 1 kB and 10kB

priming texts give almost exactly the same small compres-

sion boost, and if the priming texts must be first retrieved,

their use is a considerable burden. Nor does this latter situ-

ation improve with a more liberal timeout threshold on the

browsing session. With a limit of 60 minutes rather than

5, the comparable percentage values are 30.0% for the 1 kB

priming text, and 55.7% for the 10kB priming text. It is

quite clear that use of a priming text is only sensible if the

costs of accessing it can be amortised over a very large num-

ber of page requests. That is, it seems unlikely that use of a

per-site priming text can be warranted.

On the other hand, use of the immediately preceding file

in the access sequence as a compression context does bring

measurable benefit. Our server log was resolved into a to-

tal of 21,067 sessions fetching 48,343 pages, so the average

session is only slightly more than 2 pages long. Neverthe-

less, a worthwhile saving in outgoing bandwidth has been

identified. And if all previous pages within this browsing

session are used, the results are even more favourable.

We have also mn the same experiments with a brows-

ing session timeout of 60 minutes. With a 60 minute limit

the ONE-PRIOR method gives an overall bandwidth require-

ment of 24.0%, and the ALL-PRIOR method yields 22.9%.

The graph in Figure 4 gives a different view of our

server log data. To plot this graph, the browsing sessions

were ordered by decreasing length (measured in pages), and

then processed one-by-one to generate running totals. Each

browsing session contains some number of pages - from

2,163 (which we presume was some kind of search engine

spider, but even so, it only visited a relatively small fraction

of the pages available on our site) down to 1. For each page

in each session, we added to our running counters the cost

73

Method Disk space Network bandwidth

(% uncompressed) (% uncompressed)

NO-COMPRESSION

INDEPENDENT-GZIP

COMMON-PRIMING, 1 kB

COMMON-PRIMING, 10 kB

TRANSMITTED-PRIMING, 1 kB

TRANSMITTED-PRIMING, l0 kB

ONE-PRIOR

ALL-PRIOR

ALL-AVAILABLE, 10kB

ALL-AVAILABLE, LOSSY, 10kB

ALL-AVAILABLE, LOSSY, SPACES, 10kB

100.0 100.0

104.7 27.9

104.5 27.1

104.6 27.2

104.5 31.5

104.6 71.2

109.0 24.5

- 2 3 . 9

23.5

22.5

22.1

Table 3. Additional disk space required to store compressed web pages, and fraction of original network bandwidth required

t o transmit compressed pages, for different compression scenarios and for 443.1 MB of HTML files sent to external hosts.

ALL-PRIOR All of the previous pages in the current brows-

ing session are concatenated to form a priming text. As

in the previous method, the first page in each browsing

session is compressed without the use of any context.

ALL-AVAILABLE As for the previous method, but assum-

ing that the 10kB common priming text is also avail-

able at no cost. This is a "most optimistic" scenario:

all pages can make use of the larger of the two priming

texts, and all but the first page in each browsing session

can also make use of the text of previous pages.

ALL-AVAILABLE, LOSSY As for the previous method, but

with all comments removed from the HTML source, all

whitespace characters between HTML tags removed,

and all tags case-folded to lower case.

ALL-AVAILABLE, LOSSY, SPACES As for the previous

method, but with a single space character inserted after

each string in the dictionary.

The righthand column of Table 3 shows the compression

attained by each of these mechanisms, expressed as a ra-

tio of bytes transmitted compared to when no compression

mechanism is used. (The centre column will be discussed

below.) One slight simplification we have made in present-

ing these results is to assume that all transfers initiated re-

sult in a complete file being transferred. This assumption is

normally correct, but in some circumstances the number of

bytes transferred is less than the size of the file requested.

For example, if the user clicks "Stop" part way through a

transfer, then the transfer is aborted.

As can be seen from the table, compressing each file with

GZIP saves a considerable fraction of the network band-

width needed to support the site. GzIP operates relatively

well, even when the average file is only 10kB. Indeed, given

the speed at which GZlP-encoded text can be reconstructed,

there seems to be no reason why GZIP compression has not

already become either an official or de-facto standard for

transporting web documents.

I f a common priming text is allowed, compression im-

proves slightly - but only slightly. The 1 kB and 10kB

priming texts give almost exactly the same small compres-

sion boost, and if the priming texts must be first retrieved,

their use is a considerable burden. Nor does this latter situ-

ation improve with a more liberal timeout threshold on the

browsing session. With a limit of 60 minutes rather than

5, the comparable percentage values are 30.0% for the 1 kB

priming text, and 55.7% for the 10kB priming text. It is

quite clear that use of a priming text is only sensible if the

costs of accessing it can be amortised over a very large num-

ber of page requests. That is, it seems unlikely that use of a

per-site priming text can be warranted.

On the other hand, use of the immediately preceding file

in the access sequence as a compression context does bring

measurable benefit. Our server log was resolved into a to-

tal of 21,067 sessions fetching 48,343 pages, so the average

session is only slightly more than 2 pages long. Neverthe-

less, a worthwhile saving in outgoing bandwidth has been

identified. And if all previous pages within this browsing

session are used, the results are even more favourable.

We have also mn the same experiments with a brows-

ing session timeout of 60 minutes. With a 60 minute limit

the ONE-PRIOR method gives an overall bandwidth require-

ment of 24.0%, and the ALL-PRIOR method yields 22.9%.

The graph in Figure 4 gives a different view of our

server log data. To plot this graph, the browsing sessions

were ordered by decreasing length (measured in pages), and

then processed one-by-one to generate running totals. Each

browsing session contains some number of pages - from

2,163 (which we presume was some kind of search engine

spider, but even so, it only visited a relatively small fraction

of the pages available on our site) down to 1. For each page

in each session, we added to our running counters the cost

73

- Independent: Just compress each page
in isolation.

- Common: Priming text made from
static analysis of all documents in site.
Priming text is free.

- Transmitted: Common, plus cost to
transmit priming text.

- Prior: Preceding page(s) in session
used as priming text.

- Available: Common + Prior.

- Lossy: HTML normalization
(comments, whitespace, case-folding.)

State of Current Implementations

• INDEPENDENT-GZIP is in common use today.

- Clients can say “Accept-Encoding: gzip”. Support for this is widespread.

• Something similar to ALL-PRIOR could work with HTTP/1.1.

- “application/http” media type can encapsulate multiple messages.

- Pipelining allows a client to batch requests.

- However, Firefox disables this by default because it “is not well-supported
by some servers and proxies.”

- Google Web Accelerator does “prefetching” of linked documents.

- A client could batch-request linked documents, and the server could
send a single gzip-compressed application/http response.

Similar Issues

• The UNIX .tar.gz compression mechanism,
where a group of files to be compressed are
first combined into a single archive file,
outperforms .zip, which compresses files one
at a time.

• Nokia has a special compression format for
SVG vector graphics. “CVG performs 2-4x
better than general-purpose compression
(such as GZIP) for small (less than 30K) SVG
content.”

Method Size

.tar.gz 934,226

.zip 1,319,629

.tar.zip 934,346

Size in bytes of my /etc directory
compressed with various methods

Tradeoffs

• Compressed versions of pages can be cached to trade space for time.

- Web server administrators typically don’t, as most web servers aren’t
CPU-bound, and gzip over webpage-sized documents is extremely cheap.

• Compressing all possible versions of pages under the ALL-PRIOR
scheme is probably prohibitively expensive.

• I don’t know of anyone using bzip2 for web pages, it’s too slow to be
worthwhile.

• ONE-PRIOR and ALL-PRIOR are worthwhile, but are they worthwhile
enough to be worth implementing and making sure that it is
compatible with existing web standards and doesn’t break legacy
clients and servers? If no web servers implement it, is it worthwhile
for web client authors?

Conclusions

• Adaptive sliding window methods benefit from having context
available.

• This context is not available when compressing small documents.

• Multiple web pages in a session can be treated as a single larger
document so that context is available.

• However, this is not usually worth the implementation complexity
given modern bandwidth availability.

